阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Features

- Wide Operating Voltage Range: 2V to 16 V
- Low Current Consumption: 2.7 mA Typically
- Chip Disable Input to Power Down the Integrated Circuit
- Low Power-down Quiescent Current
- Drives a Wide Range of Speaker Loads
- Output Power $\mathrm{P}_{\mathrm{o}}=250 \mathrm{~mW}$ at $\mathrm{R}_{\mathrm{L}}=32 \Omega$ (Speaker)
- Low Harmonic Distortion (0.5\% Typically)
- Wide Gain Range: 0 dB to 46 dB

Benefits

- Low Number of External Components
- Low Current Consumption

1. Description

The integrated circuit U4083B is a low-power audio amplifier for telephone loudspeakers. It has differential speaker outputs to maximize the output swing at low supply voltages. There is no need for coupler capacitors. The U4083B has an open-loop gain of 80 dB where the closed-loop gain is adjusted with two external resistors. A chip disable pin permits powering down and/or muting the input signal.

Figure 1-1. Block Diagram

2. Pin Configuration

Figure 2-1. Pinning SO8

Table 2-1. Pin Description

Pin	Symbol	Function
1	CD	Chip disable
2	FC2	Filtering, power supply rejection
3	FC1	Filtering, power supply rejection
4	$\mathrm{~V}_{\mathrm{i}}$	Amplifier input
5	VO1 2	Amplifier output 1
6	$\mathrm{~V}_{\mathrm{S}}$	Voltage supply
7	GND	Ground
8	VO2	Amplifier output 2

3. Functional Description Including External Circuitry

3.1 Pin 1: Chip Disable Digital Input (CD)

Pin 1 (chip disable) is used to power down the IC to conserve power or mute the IC or both.
Input impedance at Pin 1 is typically $90 \mathrm{k} \Omega$

- Logic $0<0.8 \mathrm{~V} \quad$ IC enabled (normal operation)
- Logic $1>2 \mathrm{~V} \quad$ IC disabled

Figure $8-15$ on page 12 shows the power supply current diagram. The change in differential gain from normal operation to muted operation (muting) is more than 70 dB .

Switching characteristics are as follows:

- Turn-on time $t_{\text {on }}=12 \mathrm{~ms}$ to 15 ms
- Turn-off time $\mathrm{t}_{\text {off }} \leqslant 2 \mu \mathrm{~s}$

They are independent of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and V_{S}.
Voltages at Pins 2 and 3 are supplied from V_{S} and, therefore, do not change when the U4083B is disabled. The outputs, $\mathrm{V}_{\mathrm{O} 1}$ (Pin 5) and $\mathrm{V}_{\mathrm{O} 2}$ (Pin 8), turn to a high impedance condition by removing the signal from the speaker.

When signals are applied from an external source to the outputs (disabled), they must not exceed the range between the supply voltage, V_{S}, and ground.

3.2 Pins 2 and 3: Filtering, Power Supply Rejection

Power supply rejection is provided by capacitors C_{1} and C_{2} at Pin 3 and Pin 2, respectively. C_{1} is dominant at high frequencies whereas C_{2} is dominant at low frequencies (Figure 8-4 on page 8 to Figure 8-7 on page 9). The values of C_{1} and C_{2} depend on the conditions of each application. For example, a line-powered speakerphone (telephone amplifier) will require more filtering than a system powered by regulated power supply.
The amount of rejection is a function of the capacitors and the equivalent impedance at Pin 3 and Pin 2 (see electrical characteristic equivalent resistance, R).

Apart from filtering, capacitors C_{1} and C_{2} also influence the turn-on time of the circuit at power up, since the capacitors are charged up through the internal resistors ($50 \mathrm{k} \Omega$ and $125 \mathrm{k} \Omega$) as shown in the block diagram.

Figure 8-1 on page 7 shows the turn-on time versus C_{2} at $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$, for two different C_{1} values.
The turn-on time is 60% longer when $V_{S}=3 \mathrm{~V}$ and 20% shorter when $V_{S}=9 \mathrm{~V}$.
The turn-off time is less than $10 \mu \mathrm{~s}$.

3.3 Pin 4: Amplifier Input \mathbf{V}_{i}, Pin 5: Amplifier Output $1 \mathrm{~V}_{\mathbf{0 1}}$, Pin 8: Amplifier Output $2 \mathrm{~V}_{\mathbf{0} 2}$

There are two identical operational amplifiers. Amplifier 1 has an open-loop gain $\geq 80 \mathrm{~dB}$ at 100 Hz (Figure 8-2 on page 7), whereas the closed-loop gain is set by external resistors, R_{f} and R_{i} (Figure 8-3 on page 8). The amplifier is unity gain stable, and has a unity gain frequency of approximately 1.5 MHz . A closed-loop gain of 46 dB is recommended for a frequency range of 300 Hz to 3400 Hz (voice band). Amplifier 2 is internally set to a gain of $-1.0 \mathrm{~dB}(0 \mathrm{~dB})$. The outputs of both amplifiers are capable of sourcing and sinking a peak current of 200 mA . Output voltage swing is between 0.4 V and $\mathrm{V}_{\mathrm{S}}-1.3 \mathrm{~V}$ at maximum current (Figure 8-18 on page 13 and Figure 8-19 on page 13).

The output DC offset voltage between Pins 5 and $8\left(\mathrm{~V}_{\mathrm{O} 1}-\mathrm{V}_{\mathrm{O} 2}\right)$ is mainly a function of the feedback resistor, R_{f}, because the input offset voltages of the two amplifiers neutralize each other.

Bias current of Amplifier 1 which is constant with respect to V_{s}, flows out of Pin $4\left(\mathrm{~V}_{\mathrm{i}}\right)$ and through R_{f}, forcing $V_{O 1}$ to shift negative by an amount equal to $\left.R_{f}\right|_{B}$ and $V_{O 2}$ positive to an equal amount.

The output offset voltage specified in the electrical characteristics is measured with the feedback resistor ($R_{f}=75 \mathrm{k} \Omega$) shown in the typical application circuit, Figure 8-20 on page 14. It takes into account the bias current as well as internal offset voltages of the amplifiers.

3.4 Pin 6: Supply and Power Dissipation

Power dissipation is shown in Figure 8-8 on page 9 to Figure 8-10 on page 10 for different loads. Distortion characteristics are given in Figure 8-11 on page 10 to Figure 8-13 on page 11.
$P_{\text {totmax }}=\frac{\mathrm{T}_{\text {jmax }}-\mathrm{T}_{\text {amb }}}{\mathrm{R}_{\text {thJA }}}$
where
$\mathrm{T}_{\text {jmax }}=$ Junction temperature $=140^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}=$ Ambient temperature
$\mathrm{R}_{\mathrm{thJA}}=$ Thermal resistance, junction-ambient
Power dissipated within the IC in a given application is found from the following equation:
$P_{\text {tot }}=\left(V_{S} \times I_{S}\right)+\left(I_{\text {RMS }} \times V_{S}\right)-\left(R_{L} \times I_{\text {RMS }}{ }^{2}\right)$
I_{S} is obtained from Figure 8-15 on page 12.
$\mathrm{I}_{\text {RMS }}$ is the RMS current at the load R_{L}.
The IC's operating range is defined by a peak operating load current of $\pm 200 \mathrm{~mA}$ (Figure 8-8 on page 9 to Figure $8-13$ on page 11). It is further specified with respect to different loads (see Figure $8-14$ on page 12). The left (ascending) portion of each of the three curves is defined by the power level at which 10% distortion occurs. The center flat portion of each curve is defined by the maximum output current capability of the integrated circuit. The right (descending) portion of each curve is defined by the maximum internal power dissipation of the IC at $25^{\circ} \mathrm{C}$. At higher ambient temperatures, the maximum load power must be reduced according to the above mentioned equation.

3.5 Layout Considerations

Normally, a snubber is not needed at the output of the IC, unlike many other audio amplifiers. However, the PC-board layout, stray capacitances, and the manner in which the speaker wires are configured may dictate otherwise. Generally, the speaker wires should be twisted tightly, and should not be more than a few cm (or inches) in length.

4. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Reference point pin 7, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameters	Symbol	Value	Unit	
Supply voltage	Pin 6	V_{S}	-1.0 to +18	V
Voltages	Pins 1, 2, 3 and 4		-1.0 to $\left(\mathrm{V}_{\mathrm{S}}+1.0\right)$	V
Disabled	Pins 5 and 8		-1.0 to $\left(\mathrm{V}_{\mathrm{S}}+1.0\right)$	V
Output current	Pins 5 and 8		± 250	mA
Junction temperature	T_{j}	+140	${ }^{\circ} \mathrm{C}$	
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
Ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-20 to +70	${ }^{\circ} \mathrm{C}$	
Power dissipation SO8: $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{tot}}$	440	mW	

5. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	$\mathrm{R}_{\text {thJA }}$	180	K/W

6. Recommended Operating Conditions

Parameters	Symbol	Value	Unit	
Supply voltage	Pin 6	$\mathrm{~V}_{\mathrm{S}}$	2 to 16	V
Load impedance	Pins 5 to 8	R_{L}	8.0 to 100	Ω
Load current	I_{L}	± 200	mA	
Differential gain (5.0 kHz bandwidth)	DG	0 to 46	dB	
Voltage at CD	V_{CD}	V_{S}	V	
Ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-20 to +70	${ }^{\circ} \mathrm{C}$	

7. Electrical Characteristics

$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$, reference point pin 7 , unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Amplifiers (AC Characteristics)						
Open-loop gain (Amplifier 1, $\mathrm{f}<100 \mathrm{~Hz}$)		$\mathrm{G}_{\text {VOL1 }}$	80			dB
Closed-loop gain (Amplifier 2)	$\mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=32 \Omega$	$\mathrm{G}_{\mathrm{V} 2}$	-0.35	0	+0.35	dB
Gain bandwidth product		G_{BW}		1.5		MHz
Output power	$\begin{aligned} & V_{S}=3.0 V, R_{L}=16 \Omega, d<10 \% \\ & V_{S}=6.0 V, R_{L}=32 \Omega, d<10 \% \\ & V_{S}=12 V, R_{L}=100 \Omega, d<10 \% \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{O}} \\ & \mathrm{P}_{\mathrm{O}} \\ & \mathrm{P}_{\mathrm{O}} \end{aligned}$	$\begin{gathered} 55 \\ 250 \\ 400 \end{gathered}$			mW
Total harmonic distortion $(\mathrm{f}=1.0 \mathrm{kHz})$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \\ & \mathrm{P}_{\mathrm{o}}=125 \mathrm{~mW} \\ & \mathrm{~V}_{\mathrm{S}}>3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \\ & \mathrm{P}_{\mathrm{o}}=20 \mathrm{~mW} \\ & \mathrm{~V}_{\mathrm{S}}>12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \\ & \mathrm{P}_{\mathrm{o}}=200 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.6 \end{aligned}$	1.0	\%
Power supply rejection ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{S}}=3.0 \mathrm{~V} \\ & \mathrm{C}_{1}=\alpha, \mathrm{C}_{2}=0.01 \mu \mathrm{~F} \\ & \mathrm{C}_{1}=0.1 \mu \mathrm{~F}, \mathrm{C}_{2}=0, \mathrm{f}=1.0 \mathrm{kHz} \\ & \mathrm{C}_{1}=1.0 \mu \mathrm{~F}, \mathrm{C}_{2}=5.0 \mu \mathrm{~F}, \\ & \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$	PSRR PSRR PSRR	50	12 52		dB
Muting	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}, 1.0 \mathrm{kHz}<\mathrm{f}<20 \mathrm{kHz}, \\ & \mathrm{CD}=2.0 \mathrm{~V} \end{aligned}$	$\mathrm{G}_{\text {MUTE }}$		>70		dB
Amplifiers (DC Characteristics)						
$\begin{aligned} & \text { Output DC level at } \mathrm{V}_{\mathrm{O} 1} \text {, } \\ & \mathrm{V}_{\mathrm{O} 2} \\ & \mathrm{R}_{\mathrm{f}}=75 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & \mathrm{~V}_{\mathrm{O}} \\ & \mathrm{~V}_{\mathrm{O}} \end{aligned}$	1.0	$\begin{aligned} & 1.15 \\ & 2.65 \\ & 5.65 \end{aligned}$	1.25	V
Output high level	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-75 \mathrm{~mA}, \\ & 2.0 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<16 \mathrm{~V} \end{aligned}$	V_{OH}		$\mathrm{V}_{S}-1$		V
Output low level	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-75 \mathrm{~mA}, \\ & 2.0 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<16 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {OL }}$		0.16		V
Output DC offset voltage $\left(\mathrm{V}_{\mathrm{O} 1}-\mathrm{V}_{\mathrm{O} 2}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=75 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$	$\Delta \mathrm{V}_{\mathrm{O}}$	-30	0	+30	mV
Input bias current at V_{i}	$\mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}$	$-_{\text {IB }}$		100	200	nA
Equivalent resistance at Pin 3	$\mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}$	R	100	150	220	$\mathrm{k} \Omega$
Equivalent resistance at Pin 2	$\mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}$	R	18	25	40	$\mathrm{k} \Omega$
Chip disable Pin 1 Input voltage low Input voltage high Input resistance	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CD}}=16 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{HH}} \\ & \mathrm{R}_{\mathrm{CD}} \end{aligned}$	$\begin{gathered} 2.0 \\ 50 \end{gathered}$	90	$\begin{aligned} & 0.8 \\ & 175 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$
Power supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\alpha, \mathrm{CD}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\alpha, \mathrm{CD}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\alpha, \mathrm{CD}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{\mathrm{S}} \\ & I_{\mathrm{S}} \\ & \mathrm{I}_{\mathrm{S}} \end{aligned}$		65	$\begin{aligned} & 4.0 \\ & 5.0 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$

8. Typical Temperature Performance

$\mathrm{T}_{\mathrm{amb}}=-20$ to $+70^{\circ} \mathrm{C}$

Function	Typical Change	Units
Input bias current at V_{i}	± 40	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Total harmonic distortion		
$\mathrm{V}_{\mathrm{S}}=6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{P}_{\mathrm{o}}=125 \mathrm{~mW}, \mathrm{f}=1.0 \mathrm{kHz}$	+0.003	$\% /{ }^{\circ} \mathrm{C}$
Power supply current		
$\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\alpha, \mathrm{CD}=0 \mathrm{~V}$	-2.5	$\mu \mathrm{~F} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\alpha, \mathrm{CD}=2.0 \mathrm{~V}$	-0.03	$\mu \mathrm{~J} /{ }^{\circ} \mathrm{C}$

Figure 8-1. Turn-on Time versus C_{1} and C_{2} at Power On

Figure 8-2. Amplifier 1 - Open-loop Gain and Phase

Figure 8-3. Differential Gain versus Frequency

Figure 8-4. Power Supply Rejection versus Frequency $-C_{2}=10 \mu \mathrm{~F}$

Figure 8-5. Power Supply Rejection versus Frequency $-\mathrm{C}_{2}=5 \mu \mathrm{~F}$

Figure 8-6. Power Supply Rejection versus Frequency $-\mathrm{C}_{2}=1 \mu \mathrm{~F}$

Figure 8-7. Power Supply Rejection versus Frequency $-\mathrm{C}_{2}=0$

Figure 8-8. Device Dissipation $-R_{L}=8 \Omega$

Figure 8-9. Device Dissipation - $R_{L}=16 \Omega$

Figure 8-10. Device Dissipation - $\mathrm{R}_{\mathrm{L}}=32 \Omega$

Figure 8-11. Distortion versus Power $-\mathrm{f}=1 \mathrm{kHz}$, Delta $-\mathrm{G}_{\mathrm{v}}=34 \mathrm{~dB}$

Figure 8-12. Distortion versus Power $-\mathrm{f}=3 \mathrm{kHz}$, Delta $-\mathrm{G}_{\mathrm{v}}=34 \mathrm{~dB}$

Figure 8-13. Distortion versus Power $-f=1 \mathrm{kHz}$ or 3 kHz , Delta $-\mathrm{G}_{\mathrm{v}}=12 \mathrm{~dB}$

Figure 8-14. Maximum Allowable Load Power

Figure 8-15. Power-supply Current

Figure 8-16. Small Signal Response

Figure 8-17. Large Signal Response

Figure 8-18. $\quad \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{OH}}$ versus Load Current

Figure 8-19. $V_{\text {OL }}$ versus Load Current

Figure 8-20. Application Circuit

9. Ordering Information

Extended Type Number	Package	Remarks
U4083B-MFPY	SO8, Pb-free	Tube
U4083B-MFPG3Y	SO8, Pb-free	Taped and reeled

10. Package Information

Package SO8

Dimensions in mm

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
$\mathrm{CH}-1705$ Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© Atmel Corporation 2006. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$ and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

